library(transitr)
nw <- create_gtfs("https://cdn01.at.govt.nz/data/gtfs.zip",
db = "at_gtfs.sqlite")
nw %>% construct()
library(transitr)
nw <- create_gtfs("https://cdn01.at.govt.nz/data/gtfs.zip",
db = "at_gtfs.sqlite")
nw %>% construct()
library(transitr)
nw <- create_gtfs("https://cdn01.at.govt.nz/data/gtfs.zip",
db = "at_gtfs.sqlite")
nw %>% construct()
\(\hat\beta_\ell\) \(\pm 1.96\sqrt{\vphantom{x^2}P_\ell}\) and \(\hat\beta_\ell\) \(\pm 1.96\sqrt{P_\ell + \phi_\ell^2}\)
\[ p(\boldsymbol{x}_{k-1} | \boldsymbol{y}_{1:k-1}) \approx \sum_{i=1}^N w_{k-1}^{(i)} \delta_{\boldsymbol{x}_{k-1}^{(i)}} (\boldsymbol{x}_{k-1}) \]
\(N = 50\)
\[ p(\boldsymbol{x}_{k} | \boldsymbol{x}_{k-1}) \approx \sum_{i=1}^N w_{k-1}^{(i)} \delta_{\boldsymbol{x}_{k}^{(i)}} (\boldsymbol{x}_{k}) \]
\(\boldsymbol{x}_k^{(i)} = f(\boldsymbol{x}_{k-1}^{(i)}, \Delta_k, \sigma^2)\), \(\Delta_k = t_k - t_{k-1} = 60\)
\[ p(\boldsymbol{y}_{k} | \boldsymbol{x}_{k}) = ?? \]
\[ d(\boldsymbol{y}_k | h(\boldsymbol{x}_k^{(i)}) = ||g(\boldsymbol{y}_k | h(\boldsymbol{x}_k^{(i)}) || = ||\boldsymbol{r}_k^{(i)}|| \]
Assumption: \(\boldsymbol{r}_k \sim \mathcal{N}(\boldsymbol{0}, \epsilon^2\mathbf{I})\)
Therefore: \(d(\boldsymbol{y}_k | h(\boldsymbol{x}_k^{(i)})^2 \sim \mathcal{E}\left(\frac{1}{2\epsilon^2}\right)\)
\[ w_k^{(i)} = \frac{w_{k-1}^{(i)} p(\boldsymbol{y}_k | \boldsymbol{x}_k^{i})}{\sum_{j=1}^N w_{k-1}^{(j)} p(\boldsymbol{y}_k | \boldsymbol{x}_k^{j})} ,\quad p(\boldsymbol{x}_{k} | \boldsymbol{y}_{1:k}) \approx \sum_{i=1}^N w_{k}^{(i)} \delta_{\boldsymbol{x}_{k}^{(i)}} (\boldsymbol{x}_{k}) \]
\[ p(b_\ell | \boldsymbol{y}_{1:k}) \approx \sum_{i=1}^N w_{k}^{(i)} \delta_{b_{\ell}^{(i)}} (b_{\ell}) \]
\[ p(\alpha_j | \boldsymbol{\beta}_{k}, \boldsymbol{x}_{k}) \approx \sum_{i=1}^N w_{k}^{(i)} \delta_{\alpha_{j}^{(i)}} (\alpha_{j}) \]
\[ p(\alpha_j | \boldsymbol{\beta}_{k}, \boldsymbol{x}_{k}) \approx \frac{1}{N^\star} \sum_{i=1}^{N^\star} \delta_{\alpha_{j}^{(i)}} (\alpha_{j}) \]
transitr
R package
Bérczi, K., Jüttner, A., Laumanns, M., & Szabó, J. (2017). Stochastic route planning in public transport. Transportation Research Procedia, 27, 1080–1087. https://doi.org/10.1016/j.trpro.2017.12.096
Cathey, F. W., & Dailey, D. J. (2003). A prescription for transit arrival/departure prediction using automatic vehicle location data. Transportation Research Part C: Emerging Technologies, 11(3-4), 241–264. https://doi.org/10.1016/s0968-090x(03)00023-8
Dailey, D., Maclean, S., Cathey, F., & Wall, Z. (2001). Transit vehicle arrival prediction: Algorithm and large-scale implementation. Transportation Research Record: Journal of the Transportation Research Board, 1771, 46–51. https://doi.org/10.3141/1771-06
Hans, E., Chiabaut, N., Leclercq, L., & Bertini, R. L. (2015). Real-time bus route state forecasting using particle filter and mesoscopic modeling. Transportation Research Part C: Emerging Technologies, 61, 121–140. https://doi.org/10.1016/j.trc.2015.10.017
Häme, L., & Hakula, H. (2013). Dynamic journeying under uncertainty. European Journal of Operational Research, 225(3), 455–471. https://doi.org/10.1016/j.ejor.2012.10.027
Horn, M. E. T. (2004). Procedures for planning multi-leg journeys with fixed-route and demand-responsive passenger transport services. Transportation Research Part C: Emerging Technologies, 12(1), 33–55. https://doi.org/10.1016/j.trc.2002.08.001
Jeong, R., & Rilett, L. (2005). Prediction model of bus arrival time for real-time applications. Transportation Research Record: Journal of the Transportation Research Board, 1927, 195–204. https://doi.org/10.3141/1927-23
Julio, N., Giesen, R., & Lizana, P. (2016). Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms. Research in Transportation Economics, 59, 250–257. https://doi.org/10.1016/j.retrec.2016.07.019
Plummer, M. (2003). JAGS: A program for analysis of bayesian graphical models using gibbs sampling.
Shalaby, A., & Farhan, A. (2004). Prediction model of bus arrival and departure times using AVL and APC data. Journal of Public Transportation, 7(1), 41–61. https://doi.org/10.5038/2375-0901.7.1.3
Yu, B., Lam, W. H. K., & Tam, M. L. (2011). Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C: Emerging Technologies, 19(6), 1157–1170. https://doi.org/10.1016/j.trc.2011.01.003
Yu, B., Yang, Z.-Z., & Yao, B. (2006). Bus arrival time prediction using support vector machines. Journal of Intelligent Transportation Systems, 10(4), 151–158. https://doi.org/10.1080/15472450600981009
Observed shortest distance between \(\boldsymbol{y}_k\) and the shape path \(\mathcal{P}\).
\[ \begin{split} \hat\beta_{c|c-1} &= \hat\beta_{c-1|c-1} \\ P_{c|c-1} &= P_{c|c-1} + (\Delta_c q)^2 \end{split} \]